
Eurographics Symposium on Rendering 2009
Hendrik P. A. Lensch and Peter-Pike Sloan
(Guest Editors)

Volume 28 (2009), Number 4

Interactive Global Photon Mapping

B. Fabianowski and J. Dingliana

GV2 Group, Trinity College, Dublin, Ireland

Abstract

We present a photon mapping technique capable of computing high quality global illumination at interactive

frame rates. By extending the concept of photon differentials to efficiently handle diffuse reflections, we generate

footprints at all photon hit points. These enable illumination reconstruction by density estimation with variable

kernel bandwidths without having to locate the k nearest photon hits first. Adapting an efficient BVH construction

process for ray tracing acceleration, we build photon maps that enable the fast retrieval of all hits relevant to

a shading point. We present a heuristic that automatically tunes the BVH build’s termination criterion to the

scene and illumination conditions. As all stages of the algorithm are highly parallelizable, we demonstrate an

implementation using NVidia’s CUDA manycore architecture running at interactive rates on a single GPU. Both

light source and camera may be freely moved with global illumination fully recalculated in each frame.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

Photon mapping [Jen96] is a rendering algorithm reproduc-
ing the full range of global illumination effects. Photons are
Monte Carlo traced from the light sources in a preprocessing
pass and their hit points recorded in a photon map. Illumina-
tion may then be reconstructed at any point in the scene by
density estimation on nearby photon hits. The bandwidth of
the density estimation kernels is adapted to local hit density
by looking up the distance to the kth-nearest hit.

Its high computational cost initially made photon map-
ping strictly an offline rendering technique. By concentrat-
ing on specular reflections and the resulting caustics, several
authors have since achieved real-time performance, making
approximations to the exact algorithm and using a cluster of
computers [GWS04] or a GPU [SKUP∗09, ZHWG08] for
the required computational performance.

Having to locate the k nearest photon hits before any illu-
mination can be computed is an important bottleneck. Splat-
ting techniques avoid this issue by assigning each photon
hit a fixed footprint instead. From heuristics operating on a
per-surface basis [SB97], the methods for calculating foot-
prints have progressed to using a photon’s path probability
[HHK∗07] or differential vectors traced with it [SFES07].

We build on the latter work, obtaining footprints after both
specular and diffuse reflections. Knowing the footprints of
all hits allows us to construct a hierarchy of tight bounding
volumes around them. From this, the photon hits relevant to
any point in the scene can quickly be retrieved with their
contributions calculated as the hits around found. In contrast
to image-space splatting, illumination is also reconstructed
at surfaces seen only after specular reflection from the eye.

The final image is computed by ray tracing with indirect
illumination retrieved from the photon map. Photon and ray
tracing are inherently parallel. By combining these with a
highly parallel BVH build and density estimation based on
photon footprints, the entire algorithm can make efficient use
of the CUDA manycore architecture [NVI09]. We demon-
strate this by calculating two bounces of indirect lighting for
scenes with specular and diffuse surfaces at interactive frame
rates with both the light source and camera freely movable.

2. Related work

The original photon mapping algorithm [Jen96] has attracted
extensive follow-up work. We focus on the aspect most rel-
evant to our own work here, accelerating density estimation.
Hashed photon maps [MM02] enable faster photon hit re-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350
Main Street, Malden, MA 02148, USA.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

trieval but only approximate the k nearest hits. Gathering
photon hits from within a fixed radius [WKB∗02] provides
no automatic bandwidth adaptation. To accelerate photon hit
retrieval without compromising quality, photon map kd-trees
built according to the voxel volume heuristic [WGS04] may
be used. A recent implementation of real-time specular pho-
ton mapping in CUDA [ZHWG08] employs this heuristic.
Specular photon mapping at real-time speeds is also demon-
strated on a cluster of computers [GWS04].

An alternative to kth-nearest-neighbor density estimation
is to assign each photon hit an individual footprint. These
may be derived from the number of hits and area of each
surface, then used to splat contributions directly to the sur-
faces [SB97]. Clipping the footprints against scene geometry
and iteratively adjusting their sizes reduces bias [LP03]. An-
other method [LP02] uses least squares cross-validation to
compute optimal footprints per surface. Footprints may also
be based on the photons’ path probabilities [HHK∗07]. The
entire paths are stored and their contributions splat to sample
points generated by ray tracing from the eye.

Igehy [Ige99] computes footprints for the purpose of tex-
ture look-ups with a solid basis in differential geometry.
These are obtained by taking the derivatives of a ray’s posi-
tion and direction in space with respect to the parameters that
govern its emission. Applied to photon mapping [SFES07],
the technique is shown to yield better bandwidth adapta-
tion than kth-nearest-neighbor searches but allows perfectly
specular reflections only. Footprints after diffuse and glossy
reflections may be computed with the extension of ray differ-
entials to path differentials [SW01] at the expense of higher
computational cost.

While our work is concerned with high quality global il-
lumination, its interactive nature warrants a review of some
prominent approximate techniques in that domain. Instant
radiosity [Kel97] traces a small number of photons and
places secondary light sources at the hit points, approxi-
mating indirect lighting from diffuse and moderately glossy
surfaces. Follow-up work replaces the original rasterization
with ray tracing on a cluster and adds approximated specular
photon mapping to simulate caustics [WKB∗02].

Dachsbacher et al. [DS06] present a GPU implementa-
tion of a similar algorithm. Secondary lights are positioned
by sampling a deep shadow map and their contributions ap-
proximated in a shader. Focusing specifically on specular in-
teractions and caustics, a number of approximate real-time
GPU algorithms have been developed [SKUP∗09].

The introduction of programmable GPUs has sparked
interest in accelerating more sophisticated rendering algo-
rithms on their parallel processing units. Ray-triangle inter-
section implemented on the GPU [CHH02] was followed
soon by a full GPU ray tracer then extended to photon map-
ping [PDC∗03], albeit yielding low performance.

A key operation for both ray and photon tracing is the

traversal of acceleration data structures. Due to the ineffi-
ciencies in supporting stacks, early GPUs encourage stack-
less kd-tree traversal approaches [FS05]. By adding a short
stack and ray packetization [HSHH07], this yields real-time
ray tracing performance. Similar speeds result from using
roped kd-trees for stackless traversal [PGSS07].

More direct access to a modern NVidia GPU’s compu-
tational units is provided by the recent introduction of the
CUDA programming interface [NVI09]. Highly efficient
implementations of key parallel processing paradigms are
available for CUDA, such as parallel scan [HSO07] and
fast sorting [SHG09]. Ray tracing with packetized, stackless
BVH traversal executes in real time [GPSS07]. Recently,
the highest kd-tree traversal performance has been shown
to result from using a traversal stack and no explicit packeti-
zation [BAGJ08, ZHWG08]. CUDA’s computational power
also allows acceleration structures to be built in real time,
whether they be kd-trees [ZHWG08] or BVHs [LGS∗09].

3. Photon mapping

In the photon mapping algorithm, photons are emitted by the
light sources and Monte Carlo traced through the scene. On
each surface hit, the position, flux and incident direction of
the photon are recorded. Illumination may then be retrieved
from the resulting photon map by density estimation as

Lo (~x,ωo) ≈
n

∑
i=1

1

r2
i

K

(

‖~x−~xi‖2

r2
i

)

fr (~x,ωi,ωo)Φi. (1)

Given a query point ~x, nearby photon hits are retrieved
and a kernel K aligned with the surface at~x is placed around
each. Weighted by the kernel’s footprint area and its value
at~x, every photon’s flux Φi then yields an irradiance contri-
bution. These are reflected by the surface’s BRDF fr from
their incident directions ωi to the desired outgoing direction
ωo. As this estimate is prone to noise and bias, direct illumi-
nation is typically computed separately and photon mapping
used for the difficult indirect lighting only.

3.1. k-nearest-neighbor density estimation

To obtain a kernel bandwidth that adapts to local illumina-
tion conditions, photon mapping retrieves a fixed number k

of nearest photon hits and then sets the bandwidth to the ra-
dius r(~x) of their minimal bounding sphere around ~x. This
yields the desired adaptability but also introduces a bottle-
neck: The bandwidth initially is only known to be bounded
by a global rmax, requiring a temporary set of k candidate hits
to be maintained and updated as closer ones are found. Their
contributions can only fully be evaluated when the search
has completed and the bandwidth r(~x) is known.

3.2. Local kernel density estimation

An alternative approach is local kernel density estimation:
For every photon hit, a kernel bandwidth ri is chosen before

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

Figure 1: A photon traveling in direction ~d hits a surface at

~p. Its positional differentials ∂x~p and ∂y~p along with multi-

pliers ∆x and ∆y define a skewed elliptical footprint. Adding

the surface normal, a skewed footprint ellipsoid is produced.

image generation. As each hit has a predetermined kernel
footprint, their contributions are decoupled from each other.
All photon hits whose footprints overlap the query point ~x
may be located and their outgoing radiance contributions
calculated independently. This directly corresponds to equa-
tion 1 with n the number of photon hits whose footprints
overlap the query point. A disadvantage of this method is
that the adaptation of the kernel bandwidth to the hit density
is lost. For high image quality, adaptive bandwidths must be
computed in another way. Photon differentials, described in
the next section, are an elegant solution to this problem.

4. Photon differentials

The concept of photon differentials [SFES07] is an appli-
cation of ray differentials [Ige99] to photon tracing. Each
photon is equipped with differential vectors ∂x~p and ∂x

~d,
the partial derivatives of its position ~p and direction ~d with
respect to every parameter x that had influence on its path
through the scene. Upon hitting a surface, a footprint is ob-
tained by first-order Taylor expansion, multiplying ∂x~p by
the distance ∆x to the next sample taken of x. If the photon
has differentials with respect to exactly two parameters, two
vectors on the hit surface result. These can be interpreted
as the semiminor and semimajor axes of a skewed elliptical
footprint (fig. 1). The skew stems from the fact that the two
differentials need not be orthogonal to each other.

As the query points for which illumination is to be re-
constructed may lie on other surfaces than the photon hit, a
skewed ellipsoid is actually stored. The footprint’s two axes
and the normal of the surface provide a coordinate system
in which the ellipsoid is defined. During density estimation,
a footprint for any other surface may then be obtained by
cutting along it through the ellipsoid.

Equations for updating differentials after transmission
through the scene and perfectly specular interaction are pro-
vided by Igehy [Ige99]. Since neither requires additional pa-
rameters to be sampled, only differentials with respect to the
parameters governing initial emission need to be maintained.
The resulting footprints adapt to local illumination condi-
tions: Transmission through space lets footprints expand as
is the case for beams of light. Specular reflection leads to ex-
pansion or contraction, depending on whether the surface hit

is concave or convex. The resulting kernel bandwidths are
shown to more accurately adapt to local photon hit density
than in kth-nearest-neighbor density estimation [SFES07].

4.1. Emission

We stochastically emit photons from an isotropic point light
source. An emission direction is chosen for each photon by
uniformly sampling cosθ ∈ [−1,1] and ϕ ∈ [0,2π[to yield

~d =

cosϕsinθ

sinϕsinθ

cosθ

 . (2)

The initial positional differentials are zero. Initial direc-
tional differentials are computed as the partial derivatives of
~d, resulting in vectors orthogonal to ~d and to each other

∂cos θ
~d =

−cosϕcotθ

−sinϕcotθ

1

 and ∂ϕ~d =

−sinϕsinθ

cosϕsinθ

0

 (3)

In order to generate footprints, we must further determine
the spacings ∆cos θ and ∆ϕ between the current photon and
its nearest neighbors in the parameter plane. Because we use
stochastic sampling, actual spacings cannot a priori be com-
puted and expected values are calculated instead. These fol-
low from an analysis of emission directions:

Using the initial differentials of the current photon, the
emission directions of its neighbors can be approximated
by first-order Taylor expansion as ~d + ∆cos θ∂cos θ

~d and ~d +
∆ϕ∂ϕ. Due to the light source’s isotropic emission character-
istics, the expected orthogonal distances between ~d and both
of these directions are equal,

‖∆cos θ∂cos θ
~d‖ = ‖∆ϕ∂ϕ‖. (4)

When a total of n photons are emitted into a solid angle of
4π, the expected distances can be further quantified as

‖∆cos θ∂cos θ
~d‖ = ‖∆ϕ∂ϕ‖ =

√

4π

n
. (5)

The lengths of the initial differentials in equation 3 are

‖∂cos θ
~d‖ =

1
sinθ

and ‖∂ϕ~d‖ = sinθ. (6)

Combining equations 5 and 6, we obtain the desired ex-
pected spacings between neighboring photons,

∆cos θ = 2
√

π/nsinθ and ∆ϕ = 2
√

π/n
1

sinθ
. (7)

For each photon, we must therefore keep track of two po-
sitional and two directional differentials as well as the two
spacings calculated on its emission. As the photon traverses
the scene, its differentials change but the spacings remain
constant. We note the opportunity for an optimization here:

When photon differentials are updated during propaga-
tion, any scaling previously applied to them is preserved. If
the differentials are multiplied by a scaling factor and the

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

corresponding spacing by its inverse, the resulting footprints
are unaffected. We exploit this fact by scaling ∂cos θ

~d with
sinθ and ∂ϕ~d with 1/sinθ directly on emission. The initial
differentials then become

∂cos θ
~d =

−cosϕcosθ

−sinϕcosθ

sinθ

 and ∂ϕ~d =

−sinϕ

cosϕ

0

 . (8)

The corresponding offsets are scaled by the inverses of
these factors, yielding

∆cos θ = ∆ϕ = 2
√

π/n. (9)

With the spacings now equal for all photons, we need to
only keep track of the differentials per photon, using one
global spacing ∆ = 2

√

π/n to generate their footprints.

4.2. Russian roulette

Photon mapping makes a random decision between absorp-
tion and reflection whenever a photon encounters a surface.
As this Russian roulette is a stochastic sampling, it intro-
duces differentials with respect to an additional parameter
per surface interaction. Keeping track of all such differen-
tials is possible and yields path differentials [SW01]. To re-
duce computational cost, we apply a result of Herzog et al.
[HHK∗07] instead: It is shown there that footprints related
to the inverse probability of a photon’s path adapt well to
the local hit density. Rather than adding new differentials for
each Russian roulette sampling, we therefore rescale the ex-
isting differentials by 1/

√
p, increasing footprint areas by a

factor of 1/p, the inverse of the reflection probability.

4.3. Diffuse reflection

Reflection by a diffuse surface requires an outgoing direc-
tion to randomly be chosen. This introduces two more pa-
rameters, cosθ′ ∈ [0,1] and ϕ′ ∈ [0,2π[, along with new dif-
ferentials. The number of differentials is kept constant by the
following procedure: When a photon hits a diffuse surface,
this is interpreted as an absorption and a reemission. The
photon is thus considered to originate at the diffuse surface
with cosθ′ and ϕ′ as its only parameters.

The photon’s outgoing direction is computed from cosθ′

and ϕ′ as in equation 2. Its directional differentials then anal-
ogously follow equation 3, while the positional differentials
are both zero. Before we discuss the computation of spac-
ings ∆cos θ′ and ∆ϕ′ , we note that by completely discarding
the photon’s previous differentials, any adaptation to the il-
lumination conditions at its new origin would be lost.

In order to retain this information, we virtually offset the
photon’s origin along the reverse of its outgoing direction
so that where the photon passes the surface, its old and new
differentials correspond to footprints of equal area (fig. 2).

Assuming the photon’s initial differentials have been
scaled to follow equation 8 upon emission, its footprint at

Figure 2: A photon traveling in direction ~d hits a diffuse

surface at ~p. On reemission in direction ~d′, its origin is offset

backwards to ~p′ so that the footprint areas A and A′ match.

the diffuse surface has semiaxes ∆∂cos θ~p and ∆∂ϕ~p. The po-
tentially skewed elliptical footprint’s area then is

A = π‖∆∂cos θ~p ×∆∂ϕ~p‖. (10)

Offsetting the photon’s new origin to ~p′, it will have trav-
eled a distance v (fig. 2) as it reaches ~p again. Its positional
differentials will therefore have expanded from their initial
values of zero to

∂cos θ~p = v∂cos′ θ
~d′ and ∂ϕ~p = v∂ϕ′

~d′. (11)

The photon’s new footprint area is thus

A
′ = π‖∆cos θ′v∂cos θ′

~d′×∆ϕ′v∂ϕ′
~d′‖. (12)

The required offset distance is computed by equating A

and A′, then solving for v to obtain

v =

√

‖∆∂cos θ~p ×∆∂ϕ~p‖
‖∆cos θ′∂cos θ′

~d′×∆ϕ′∂ϕ′
~d′‖

. (13)

In calculating the values ∆cos θ′ and ∆ϕ′ , we adopt the
concept of global deltas by Suykens and Willems [SW01].
When tracing a large number of independent paths, they sug-
gest the spacings be based on the number of paths reaching
each bounce depth and the number of sampling decisions
this requires. Treating differential reflection as reemission,
each photon path contains exactly two sampling decisions.

The number of paths decreases at higher bounce depths
due to Russian roulette. Rather than introducing the par-
allelization bottleneck of having to count photons at each
depth before proceeding with reemission, we expand the sur-
viving photons’ footprints to account for Russian roulette
(section 4.2) and in sampling, treat their number as remain-
ing approximately constant. We therefore always compute
∆cos θ′ and ∆ϕ′ based on the sampling of two parameters by
n photons. All considerations of section 4.1 then hold, allow-
ing us to initialize the new directional differentials by equa-
tion 8 and retaining a single ∆ for footprint computations.

Our method of computing photon differentials after dif-
fuse reflection meets three aims. First, the number of differ-
entials is kept constant, leading to fast computation. Second,
the adaptation to illumination conditions at the reemission
point is preserved. Third, the photon’s footprint continues to
adapt as it is traced onward through the scene.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

In the context of efficient rendering, we find that full
adaptation to illumination conditions is not always desirable.
Photon mapping with kth-nearest-neighbor density estima-
tion computes a single bandwidth for all photon hits near
a shading point, without distinguishing between those that
sparsely represent dim lighting and denser ones correspond-
ing to brigher illumination. By calculating individual foot-
prints for each photon, we achieve better adaptation as on the
same surface, photon hits representing different illumination
can have largely varying footprints. While this allows illu-
mination to be reconstructed with constant variance, large
photon footprints are detrimental to rendering speeds.

We thus prefer footprint sizes that shift the tradeoff to-
ward less bias and more variance as photon hits get more
sparse. After photon tracing has completed, a nonlinear scal-
ing is therefore applied to the footprints of all diffusely re-
flected photons. Each footprint semiaxis is rescaled by a fac-

tor ‖∂x~p‖−
3
4 with ∂x~p the positional differential that was

used to generate it. This compresses the range of footprint
radii, reducing adaptation as hits become more sparse. All
semiaxes are furthermore uniformly scaled by a smoothing
factor s that gives the user control over the overall tradeoff
between variance and bias in the scene.

5. BVH photon map

After photon tracing, a hierarchical data structure is built that
accelerates the retrieval of photon hits relevant to the query
points. Top-down construction begins with the set of all hits,
recursively determining where to split the set and whether to
split at all or build a leaf node instead.

A kd-tree of hit positions [Jen96] is typically used. For
kth-nearest-neighbor density estimation, the precise volume
of space within which a photon hit contributes flux is not
a priori known. This makes a data structure that organizes
point data the logical choice. Because we know the actual
footprint ellipsoids, a BVH, a hierarchy of tight axis-aligned
bounding boxes, is a more natural choice. To reconstruct il-
lumination at a query point~x, the BVH is traversed, descend-
ing into all nodes that contain~x and accumulating the contri-
butions of hit points found in the visited leaves. We compare
two methods for building such BVHs and show that linear
BVH construction [LGS∗09] is a good option, combining
high retrieval performance with low construction cost.

5.1. Voxel volume heuristic

The original choice of balanced kd-trees yields subopti-
mal acceleration. Faster photon hit retrieval is achieved by
building kd-trees according to the volume heuristic (VVH)
[WGS04], recursively minimizing the cost metric

C = VLNL +VRNR. (14)

The cost of a node with children L and R is approximated
as the sum of costs incurred by visiting them, weighted by

the probabilities of having to do so. A child’s volume serves
as an estimate of the probability while the cost of visiting is
assumed to be proportional to the number of hits contained
in the node. As the actual regions of contribution are un-
known, VL and VR are conservative estimates.

This heuristic is directly applicable to our BVH: Assum-
ing a uniform distribution of query points in the scene, the
probability of having to visit a node is proportional to its vol-
ume. We retain the assumption that the cost of doing so is
linear in the number of photon hits the node contains and ar-
rive at equation 14 again. While there are 2N ways in which
N photon hits could be distributed among two children, we
follow current practice in ray tracing acceleration [WBS07]
and only consider the 3N partitionings obtained by sweeping
a plane through the photon hits along one of the axes.

5.2. Linear BVH

Linear BVH construction [LGS∗09] is a faster alternative to
the use of a cost metric. All photon hits are first sorted ac-
cording to their Morton codes, the positions along a space-
filling Morton curve. Because these are computed to a lim-
ited bit length, closeby hits may be assigned the same code.
BVH construction then logically proceeds by splitting the
set of all photon hits according to their Morton codes, re-
cursing from most to least significant bit. As the photon hits
are sorted by these codes, each split simply partitions an in-
terval of their sequence into two subintervals.

The construction process is highly parallel. Morton codes
can be computed from the overall bounding volume and pho-
ton hit position alone, a fast radix sort may be used due to
the limited bit length of the codes and all inner nodes can be
located in parallel [LGS∗09]. In section 6.2, we furthermore
describe the fast computation of all node bounding volumes.

5.3. Termination criterion

Both voxel volume heuristic and linear BVH construction
address the question where to split but leave open the ques-
tion whether to split at all. With the VVH, a natural crite-
rion is to stop when the expected cost of the best split is
larger than that of a leaf at the parent node P. Taking into
account the cost CBV of testing the query point against two
child bounding volumes, this yields the termination criterion
VPCBV +VLNL +VRNR > VP (NL +NR).

Adjusting the value of CBV lets the splitting terminate at
different points. However, we find that all values result in
BVHs with poorer query performance than continuing to
split until each leaf contains just one hit. We therefore do
not use this criterion and instead simply stop splitting when
the number of hits reaches a threshold. Table 1 lists frame
rates for a number of benchmark scenes rendered with BVHs
built using the VVH and linear methods with different leaf
size thresholds. The optimal threshold is marked in each case

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

Scene Sponza Scene 6 Conference Sibenik Wall
Photons 292k 161k 321k 98k 391k 414k 70k

Voxel volume heuristic
1 6.45 3.33 0.83 5.78 1.21 4.61 4.12
2 7.57 3.95 0.97 7.02 1.48 5.56 4.51
4 8.08 4.28 1.09 7.36 1.68 6.19 4.72
8 8.25 4.33 1.15 7.26 1.79 6.48 4.92

16 7.98 4.23 1.18 6.94 1.81 6.48 4.98
32 7.40 3.96 1.19 6.45 1.78 6.22 4.99
64 6.75 3.67 1.17 5.86 1.66 5.73 4.80

128 5.99 3.32 1.16 5.24 1.51 5.13 4.39
256 5.11 2.95 1.11 4.55 1.38 4.36 3.93
512 4.24 2.49 1.02 3.78 1.22 3.64 3.36

Tauto 5 19 56 7 22 5 42
FPSauto

FPSmax
100 % 96.3% 98.3% 99.5% 100% 97.7% 99.8%

Linear BVH build
1 6.40 3.11 0.76 5.79 1.20 4.24 4.00
2 7.19 3.49 0.86 6.49 1.34 4.74 4.23
4 7.55 3.78 0.95 6.77 1.53 5.48 4.42
8 7.60 3.86 1.01 6.80 1.64 5.81 4.64

16 7.44 3.83 1.06 6.52 1.70 5.79 4.70
32 6.82 3.66 1.11 6.04 1.66 5.58 4.59
64 6.20 3.43 1.12 5.52 1.57 5.29 4.23

128 5.51 3.12 1.14 4.88 1.43 4.73 3.72
256 4.69 2.80 1.09 4.25 1.27 4.15 3.20
512 3.99 2.46 1.01 3.50 1.12 3.56 2.56

Tauto 5 19 56 7 22 5 42
FPSauto

FPSmax
100% 98.4% 99.1% 100% 99.4% 97.6% 97.0%

Table 1: Rendering speeds in FPS using BVHs built using

the two methods and different leaf size thresholds; automatic

thresholds and the fraction of the maximal speed these yield.

and can be seen to depend on the scene but also on illumina-
tion conditions, indicated by the number of photon hits.

Rather than manually tuning the threshold for each scene
or choosing a single compromise value, we propose a heuris-
tic that automatically adjusts the threshold to scene and illu-
mination conditions: Tauto is proportional to the ratio of the
cumulative areas of all photon hit footprints and all scene
surfaces. Intuitively, this corresponds to the number of pho-
ton hits that would contribute at each query point ~x if both
the query points and photon hits were uniformly distributed
on the surfaces. When more photon hits are expected to con-
tribute, larger leaves are built.

The values of Tauto and the rendering speeds these yield
are also given in the tables. We find that the heuristic reaches
an average of 98.80% of the best manually tuned speed for
the VVH and similarly, 98.79%, for the linear build. Impor-
tantly, the threshold is automatically adjusted when the light
source is moved and illumination conditions change.

6. Manycore implementation

We have implemented the algorithms described in this pa-
per using NVidia’s CUDA [NVI09]. This is an example of a
modern manycore architecture, reaching high computational

performance through massive parallelization. Threads run-
ning a common CUDA kernel are launched by the host CPU
and executed on a GPU’s parallel processing cores. In our
work, a GeForce GTX280 with 240 cores is used.

16 threads always execute in wide SIMD fashion, in-
curring a performance penalty if their code paths diverge.
These are further grouped into blocks of up to 512 threads
among which explicit synchronization and data exchange via
a small pool of fast shared memory are possible. Beyond
this, accesses to the GPU’s global memory feature high la-
tency, limited bandwidth and no caching. High performance
is attained by spawning thousands of threads so that when
stalls occur, CUDA’s hardware multithreading can switch to
other waiting threads, hiding memory latency.

6.1. Photon and ray tracing

Recent results [BAGJ08, ZHWG08] show that in CUDA,
stack-based traversal of a scene acceleration data structure
with threads corresponding to individual rays and no group-
ing into packets leads to the fastest ray tracing. Latencies in-
curred by maintaining traversal stacks in global memory are
well hidden by CUDA’s multithreading. Wide SIMD coher-
ence is automatically exploited where threads follow identi-
cal code paths, regardless of whether they are accessing the
same part of the scene or not.

We follow these findings in our implementation. As only
static geometry is currently used, a high quality kd-tree is
prebuilt on the CPU. For rendering, one thread per eye ray is
spawned. During photon tracing, 216 threads are used with
each responsible for multiple photons. We use a physically
plausible modified Phong BRDF [LW94], adding a term for
perfectly specular reflection.

6.2. Photon map construction

Lauterbach et al. [LGS∗09] find that linear BVH construc-
tion is very efficient in CUDA but produces BVHs of signif-
icantly lesser quality than cost metric minimization. Table 1
shows that this result from ray tracing acceleration does not
apply to BVH photon maps: The linear build with automati-
cally tuned leaf size threshold produces photon maps that on
average yield 92.58% of the rendering speed achieved with
BVHs built using the voxel volume heuristic. As we rebuild
the BVH for each frame and linear construction combines
fast build times with good rendering performance, we there-
fore choose this method.

After photon tracing, all hits are counted and their overall
bounding volume as well as the cumulative footprint area are
computed using a CUDA parallel scan [HSO07]. We then
largely follow the original linear BVH construction algo-
rithm, calculating 30-bit Morton codes, sorting the hits ac-
cording to these and comparing neighboring codes to pro-
duce a split list that indicates where the sorted hits are to be
split on each hierarchy level.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

The BVH should be built by splitting top-down until the
leaf size threshold is reached, but we can reverse this pro-
cess: First, a segmented scan computes bounding volumes
for subsets of hits sharing the same Morton code. These sub-
sets cannot be split further and are our candidate leaves. Af-
ter this operation, we sort the split list by hierarchy level.

The list is then processed bottom-up, for each hierarchy
level spawning one thread per split. The thread retrieves the
hit counts and bounding volumes of its two children, both
of which have been built at deeper hierarchy levels. If their
added hit counts are above the threshold, an inner node is
built. Otherwise, the two children must be leaves and are
fused into one larger leaf. This way, the termination criterion
is honored as splits below the threshold leaf size are undone.

As a simplification, we omit the segmented scan in our
current implementation and instead loop over each subset
of hits sharing a Morton code. We find that because these
subsets are small, this does not affect performance.

6.3. Photon hit retrieval

To reconstruct indirect illumination, we accumulate the con-
tributions of all photon hits whose footprint ellipsoids over-
lap the surface point being shaded. The BVH photon map
is recursively traversed, reusing the traversal stack allocated
for ray tracing. We compactly store the child bounding boxes
with each inner node, reducing the number of global mem-
ory reads required. Because in a linear BVH, each leaf cor-
responds to an interval in the sorted photon hit sequence, a
leaf is encoded simply as the index of its first photon hit and
a flag bit on the last hit marking its end. All photon hit data
is read via the GPU’s texturing units as these provide some
minimal caching and thus slightly increase performance.

7. Results

We present the results of running our algorithm on an NVidia
GTX280 GPU. Benchmark scenes are rendered at 512×512
resolution with ray tracing for direct illumination and pho-
ton mapping for two bounces of indirect lighting. One level
of recursion is used where eye rays hit reflective objects.
Screenshots comparing ray tracing to our technique are
shown in figure 3. Note the indirect lighting in otherwise
dark areas and the color bleeding between surfaces.

The benchmark scenes are chosen to evaluate a wide
range of application scenarios. Sponza and Sibenik are very
large, requiring high numbers of photons. Scene 6 and Wall
exhibit strong color bleeding. Ring demonstrates that we can
reproduce both diffuse and specular illumination. Confer-
ence is a medium-sized scene with detailed geometry. Many
surfaces are partially specular, such as a wall-sized mirror
in Scene 6 and a reflective floor in Sibenik. Specifics of the
scenes, benchmark setups and results are given in table 2.

We emit as many photons as possible while maintain-
ing 3–4 frames per second, maximizing image quality. The

Scene Sponza Scene 6 Conf. Sibenik Wall Ring
Tris 76k 804 283k 77k 30 138

Emits 256k 128k 128k 512k 128k 128k
Hits 299k 164k 83k 418k 69k 76k

s 40 17.5 22.5 60 15 10
rmax 0.7 0.7 0.7 0.7 0.7 0.7
kPD 175 344 234 224 480 182

FPSPD 3.98 3.50 4.50 3.43 4.22 6.22

kPM 155 319 241 197 511 151
FPSPM 0.60 0.17 0.55 0.46 0.25 0.52

Table 2: Number of triangles, photon emissions and hits;

smoothing factor and maximal footprint radius; average

number of photon hits in density estimate and frame rate.

For comparison, number of photon hits in density estimate

and frame rate using traditional photon mapping.

smoothing factor controlling the tradeoff between variance
and bias is adjusted for optimal image quality in each scene.
For photons that have undergone only specular reflections, a
smoothing factor of 5 is used, ensuring very sharp caustics.
We report the average number of photon hits contributing to
a shading point, kPD, and the average frame rate, FPSPD.
Both are measured over animations in which camera and
light move through the scene. This way, different parts of the
scenes and varying illumination conditions are considered.

As a reference, we have rendered the same scenes using
traditional photon mapping with kth-nearest-neighbor den-
sity estimation. We find that quality equal to our algorithm
is achieved by setting kPM ≈ kPD. Because we have not im-
plemented a per-frame rebuild of the balanced kd-tree pho-
ton map, it is constructed once and the light source then left
static throughout the animation. Despite this, rendering with
kth-nearest-neighbor density estimation, even though also
implemented in CUDA, yields uncompetitive frame rates.

In traditional photon mapping, all photon hits within a
predefined maximal radius must initially be taken into con-
sideration. Only when the first kPM hits have been found can
the search radius be reduced. This, however, requires a min-
heap of the retrieved hits to be built and then continuously
updated to determine which ones are nearest. The data struc-
ture is too large to fit into CUDA’s fast shared memory and
residing in slow global memory, degrades performance.

We do not compare our work to approximate techniques
as the visual impact of approximations is difficult to quantify
and weigh against the frame rate. In comparison to splatting-
based approaches, our method has the advantage of also re-
constructing indirect lighting at surfaces that can only be
seen after specular reflection of the eye ray.

Table 3 shows the distribution of footprint radii computed
by our algorithm for each scene which can be seen to vary
over a wide range. To avoid frame rate degradation by statis-
tical outliers, the radii are clamped to rmax = 0.7 before ren-
dering. This value was chosen as it affects only a small num-
ber of footprints. An exception is Sibenik where many foot-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

Figure 3: Screen shots of ray tracing (direct illumination only) and interactive photon mapping (two bounces of indirect

lighting) in our benchmark scenes. From left to right: Sponza, Scene 6, Conference, Sibenik and Wall.

Figure 4: Diffuse and caustic illumination with constant

(left) and Epanechnikov (right) kernel.

prints have radii in the range of 0.7. This is because Sibenik
is a very large scene approaching the maximum of what our
method can currently handle at interactive rates.

In the Ring scene, specular reflection generates the famil-
iar cardioid caustic. Photons are emitted isotropically and
specular photons are thus interspersed with large numbers
of diffusely reflected global photons. Figure 4 illustrates that
our algorithm can faithfully reconstruct both types of illu-
mination from a single BVH photon map. In traditional pho-
ton mapping, separate global and diffuse photon maps would
have to be used [Jen96]. We also evaluate the impact of using
an Epanechnikov kernel instead of a simpler uniform kernel
here, finding that image quality is slightly improved while
the frame rate drops from 6.24 to 6.12.

Figure 5 shows a breakdown of the average times spent
tracing photons, building the BVH and rendering, includ-
ing illumination reconstruction. The rendering phase clearly
dominates, indicating that even better BHVs reducing query
times further hold the most promise for future speed-ups.

8. Conclusions and future work

We have presented a photon mapping algorithm capable of
computing diffuse and specular indirect lighting at interac-

Sponza

Scene 6

Conference

Sibenik

Wall

Ring

Ring (Ep.)

0.000 0.100 0.200 0.300
s

Figure 5: Average times for photon tracing (blue), BVH con-

struction (red) and rendering (yellow) per frame.

Radius Sponza Scene 6 Conf. Sibenik Wall Ring
0.00 - 0.05 0 0 0 0 0 2263
0.05 - 0.10 0 67 0 0 0 2599
0.10 - 0.15 0 1312 59 4 5239 77738
0.15 - 0.20 0 4924 1508 122 113176 91040
0.20 - 0.25 0 22669 4561 169 42587 6818
0.25 - 0.30 0 141992 9556 152 4338 820
0.30 - 0.35 203 115835 42702 403 800 176
0.35 - 0.40 2996 29015 60651 1064 206 45
0.40 - 0.45 9780 11434 31223 1338 70 14
0.45 - 0.50 35825 4171 13529 2399 21 7
0.50 - 0.55 106333 1767 5652 13039 12 1
0.55 - 0.60 160218 1147 2282 67409 6 1
0.60 - 0.65 145408 838 990 148809 2 1
0.65 - 0.70 83393 669 492 183957 1 0
0.70 - 0.75 37485 558 247 155829 1 0
0.75 - 0.80 17311 464 132 119112 0 0
0.80 - 0.85 8895 399 78 72895 0 0
0.85 - 0.90 4929 348 43 40362 0 0
0.90 - 0.95 2845 304 25 22173 0 0
0.95 - 1.00 1732 266 16 12636 0 0

> 1.00 3108 2406 30 26417 0 0

Table 3: Distribution of photon footprint radii as computed

from photon differentials in each scene.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Fabianowski & J. Dingliana / Interactive Global Photon Mapping

tive frame rates, taking advantage of the processing power
available on the manycore CUDA architecture. Geometry
is static in our current implementation but light source and
camera can freely be moved. Contrary to existing CUDA
photon mapping implementations, we reconstruct not just a
small, focused caustic but compute accurate illumination on
all visible surfaces.

Many extensions could further improve our method. Foot-
prints are currently only defined for emission by point light
sources, diffuse and perfectly specular reflection. Highly
glossy surfaces could be treated approximately as perfectly
specular, but a more accurate computation is desirable. Effi-
cient footprint calculation for area light sources will also be
a valuable addition.

Our use of random numbers makes the noise in the im-
ages incoherent between frames. By using a quasi-random
sequence instead, we can improve coherence and eliminate
flickering artifacts. Due to its periodicity, the quasi-random
Halton sequence can further be used to explore the scene
with a small number of pilot photos and then follow up with
many similar paths where necessary [GWS04].

To improve speed, we will concentrate on the BVH con-
struction, looking for a more potent heuristic that produces
BVHs with better query times. As our technique is highly
parallel, we want to experiment with distributing it further
across the cores of multiple GPUs. Finally, we want to add
support for deformable geometry by applying a fast rebuild-
ing technique to the scene’s acceleration data structure.

9. Acknowledgments

We thank the anonymous reviewers for their many valu-
able comments and suggestions. This work was supported by
IRCSET under the Embark Initiative. Models used are cour-
tesy of M. Dabrovic, A. Grynberg, P. Shirley and G. Ward.

References

[BAGJ08] BUDGE B., ANDERSON J., GARTH C., JOY K.:
A straightforward CUDA implementation for interactive ray-
tracing. In RT (2008), p. 178. 2, 6

[CHH02] CARR N., HALL J., HART J.: The ray engine. In
EGGH (2002), pp. 37–46. 2

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect
illumination. In I3D (2006), pp. 93–100. 2

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration structures
for a GPU raytracer. In EGGH (2005), pp. 15–22. 2

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK

P.: Realtime ray tracing on GPU with BVH-based packet traver-
sal. In RT (2007), pp. 113–118. 2

[GWS04] GÜNTHER J., WALD I., SLUSALLEK P.: Realtime
caustics using distributed photon mapping. In EGSR (2004),
pp. 111–121. 1, 2, 9

[HHK∗07] HERZOG R., HAVRAN V., KINUWAKI S.,
MYSZKOWSKI K., SEIDEL H.-P.: Global illumination us-
ing photon ray splatting. In Eurographics (2007), pp. 503–513.
1, 2, 4

[HSHH07] HORN D., SUGERMAN J., HOUSTON M., HANRA-
HAN P.: Interactive k-d tree GPU raytracing. In I3D (2007),
pp. 167–174. 2

[HSO07] HARRIS M., SENGUPTA S., OWENS J.: Parallel pre-
fix sum (scan) with CUDA. In GPU Gems 3. Addison-Wesley
Professional, 2007, pp. 851–876. 2, 6

[Ige99] IGEHY H.: Tracing ray differentials. In ACM SIGGRAPH

(1999), pp. 179–186. 2, 3

[Jen96] JENSEN H.: The Photon Map in Global Illumination.
PhD thesis, Technical University of Denmark, Lyngby, Denmark,
1996. 1, 5, 8

[Kel97] KELLER A.: Instant radiosity. In ACM SIGGRAPH

(1997), pp. 49–56. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH construction on GPUs.
In Eurographics (2009), pp. 375–384. 2, 5, 6

[LP02] LAVIGNOTTE F., PAULIN M.: A new approach of density
estimation for global illumination. In WSCG (2002), pp. 263–
270. 2

[LP03] LAVIGNOTTE F., PAULIN M.: Scalable photon splatting
for global illumination. In GRAPHITE (2003), pp. 203–210. 2

[LW94] LAFORTUNE E., WILLEMS Y.: Using the Modified

Phong Reflectance Model for Physically Based Rendering. Tech.
Rep. CW 197, K.U. Leuven, 1994. 6

[MM02] MA V., MCCOOL M.: Low latency photon mapping
using block hashing. In EGGH (2002), pp. 1–11. 1

[NVI09] NVIDIA CORPORATION: NVIDIA CUDA program-
ming guide version 2.2, 2009. 1, 2, 6

[PDC∗03] PURCELL T., DONNER C., CAMMARANO M.,
JENSEN H., HANRAHAN P.: Photon mapping on programmable
graphics hardware. In EGGH (2003), pp. 41–50. 2

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless kd-tree traversal for high performance GPU ray
tracing. In Eurographics (2007), pp. 415–424. 2

[SB97] STÜRZLINGER W., BASTOS R.: Interactive rendering of
globally illuminated glossy scenes. In EGWR (1997), pp. 93–
102. 1, 2

[SFES07] SCHJØTH L., FRISVAD J., ERLEBEN K., SPORRING

J.: Photon differentials. In GRAPHITE (2007), pp. 179–186. 1,
2, 3

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing ef-
ficient sorting algorithms for manycore GPUs. In IPDPS (2009).
2

[SKUP∗09] SZIRMAY-KALOS L., UMENHOFFER T., PATOW G.,
SZÉCSI L., SBERT M.: Specular effects on the GPU: State of the
art. accepted for publication in Computer Graphics Forum, 2009.
1, 2

[SW01] SUYKENS F., WILLEMS Y.: Path differentials and appli-
cations. In EGWR (2001), pp. 257–268. 2, 4

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM TOG 26, 1 (2007), 6:1–6:18. 5

[WGS04] WALD I., GÜNTHER J., SLUSALLEK P.: Balancing
considered harmful – faster photon mapping using the voxel vol-
ume heuristic –. In Eurographics (2004), pp. 595–603. 2, 5

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive global illumination using fast ray
tracing. In EGWR (2002), pp. 15–24. 2

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. In SIGGRAPH Asia

(2008), pp. 126:1–126:11. 1, 2, 6

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

