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Abstract

Mesh deformations are generally specified by manipulating an underlying control structure. This may have te-
diously been built in a preprocessing step or computed ad-hoc from user sketches. We propose an extension to the
latter approach, deriving three-dimensional representations of a skeleton and the surrounding region of interest
from one or two simple strokes. This provides a substantial improvement over existing techniques, which build
only two-dimensional structures on the fly. As a single planar sketch is not sufficient to fully describe a three-
dimensional skeleton, its shape must be deduced by interpreting the input strokes in the context of the model. We
explain the challenges involved, analyze several algorithms for interpreting the input and conclude by sketching
out the direction of our ongoing work on the topic.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Modeling Packages I.3.6
[Methodology and Techniques]: Interaction Techniques

1. Introduction

Mesh deformation is an important component of 3D mod-
eling and animation. It normally begins with a preprocess-
ing stage, where the model is attached to a control structure.
Deformations are then specified by manipulating this struc-
ture. Kho and Garland [KG05] propose to eliminate the ex-
plicit preprocessing. A reference stroke selects part of the
model and also serves as its controlling entity. The mesh is
deformed by matching the reference to a target stroke. This
technique allows for the direct manipulation of unstructured
polyhedral meshes. It yields impressive results, but is not
without limitations. Most importantly, the control structure
is two-dimensional, lying entirely in the view plane. This re-
quires the camera to be locked to a single view per deforma-
tion. Complex adjustments must be broken into a more cum-
bersome sequence of steps. As the mesh is being deformed,
self-intersections can occur that are then carried forward into
subsequent steps, incrementally corrupting the result.

Our aim is to improve on the previous work by build-
ing more sophisticated structures on the fly. The goal is to
construct fully three-dimensional representations of the se-
lected region and its skeleton while retaining an intuitive,
sketch-based interface. The skeleton can be used to deform
a model in all three dimensions, eliminating the need to re-
peatedly build new control structures. A three-dimensional
description of the selected region allows self-intersections to
seamlessly be detected and resolved. Building on Kho and
Garland’s technique, we construct a set of cutting planes or-
thogonal to the skeleton. The first and last planes delimit the
selected region. Cuts through the mesh surface by interme-
diary planes describe the selection’s profile, expressing it as
a generalized cylinder. An example is shown in figure 1.

We evaluate two forms of input. Inspired by [KG05], the
first has the user draw a single stroke indicating a projec-

Figure 1: Selection of a dinosaur’s leg (red: stroke on mesh
surface; green: generated cuts; blue: resulting skeleton)

tion of the desired skeleton onto the mesh surface. The other
form consists of two strokes, one specifying the beginning
and one the end of the selected region. Our work focuses on
the question of how a skeleton and a set of cutting planes
orthogonal to it can be reconstructed from this input.

2. Related Work

The first step of mesh deformation generally is building
a control structure and attaching the mesh to it. Different
types of control structures have been proposed. An FFD lat-
tice [SP86] is very flexible, but also tedious to control due to
the large number of parameters it exposes. Wires [SF98] are
located on the mesh surface and provide an interaction sim-
ilar to armatures in sculpting. More common than either of
these two is the skeleton. In traditional manual instrumen-
tation [CGC∗02], the user builds the skeleton and attaches
the mesh to it by hand. While this offers great flexibility, it
requires extensive input from the user.



2 B. Fabianowski & J. Dingliana / Toward 3D Selection and Skeleton Construction by Sketching

To remove the need for manual input, a skeleton can auto-
matically be extracted from the model. This is routinely done
for virtual endoscopy [PWMZ95, LH00, BST05], but the al-
gorithms only operate on volumetric data. A principle that is
applicable to both volumetric [HF05] and mesh [MP02] rep-
resentations is wave propagation. Starting from one or more
points, waves travels through the model, producing topologi-
cal rings on its surface. The rings’ centers are then connected
to yield the skeleton. Similar rings are generated and con-
nected in Plumber [MPS∗04] by sweeping a sphere through
the tubular regions of a mesh. The two construction steps can
also be reversed [LWTH01], building a skeleton first by in-
crementally collapsing mesh edges and only then sweeping
a plane along it to better assess the shape of the model.

The latter approach allows the mesh to be separated into
visually salient components. Skeleton extraction itself can
also be based on this principle. In [OIN∗06], the mesh is it-
eratively partitioned using the geodesic distances of its ver-
tices from a random subset of points on the surface. Con-
necting the centers of the resulting salient parts then yields
a skeleton. Smoother boundaries between the mesh compo-
nents are achieved by probabilistic subdivision [KT03]. A
related technique calculates the geodesic distances from a
small number of feature points [TVD07] and then returns
the dual Reeb graph of this mapping as the skeleton. Ap-
proaches derived from the medial axis transform [Blu67] use
a Voronoi diagram of the mesh vertices and their connectiv-
ity information to build a skeleton [YBS03].

An issue affecting all fully automatic techniques is that
the skeleton may not fit the user’s needs. Whenever the user
wishes to deform part of the mesh, a corresponding skeleton
edge must be present. If none has been generated, deforma-
tion is not possible. The problem may be alleviated some-
what by guiding skeleton extraction via manual input. For
wave propagation approaches, this corresponds to choos-
ing the wave starting points by hand [LV99]. Approaches
based on partitioning may allow the user to request fur-
ther subdivision of mesh regions for which the skeleton is
not sufficiently detailed [OIN∗06]. The medial axis trans-
form suffers from the additional problem that for a three-
dimensional model, a 2D medial surface is actually pro-
duced. In the hybrid technique of [TT98], both issues are
avoided at the expense of substantial manual input. The
skeleton is constructed by hand and only its connection to
the mesh automatically computed using the correspondence
between skeleton and medial axis.

As a byproduct of automatic skeleton extraction, each ver-
tex can be associated with the skeleton edge generated from
it. When performing manual instrumentation, this has to be
done by hand. For high quality results, every vertex is ex-
plicitly linked to an edge. A faster but less precise method is
to let each skeleton edge influence the mesh surface within
a given radius. Using the latter approach, deformations can
easily be transferred from one mesh to another [LCJ93], or a
combination of two meshes obtained by morphing [LV94].

Deformation techniques have more recently been devel-
oped that do not require the control structure to be built in
a preprocessing step. It is instead derived ad-hoc from user
sketches. As the structure is usually built only for part of the
model, not only must mesh vertices be associated with it, but
also the subset chosen that is to be affected. This region of
interest is commonly either manually specified in an addi-
tional step [CJ06], or automatically computed to include all
vertices within a given distance of the stroke [Buj06].

For FFDs, ad-hoc control of two-dimensional deforma-
tions is possible by sketching the reference and target shapes
of a scalar field [HQ03]. Part of the model’s silhouette can
also directly be used as its control structure [NSACO05].
Other approaches build a linear structure similar to a skele-
ton by projecting the user’s sketches onto a plane or the mesh
surface. In the inspiration for this work [KG05], a reference
stroke in the view plane serves as the controlling entity. The
region of interest is automatically calculated using cutting
planes perpendicular to the stroke at its beginning and end,
but can manually be overridden. Strokes on the model’s sur-
face are used by [Buj06] and [OSSJ05] as control structures
for local deformations affecting only a small region of the
surface. A similar approach allows for the sketch-based con-
struction of facial expressions [CJ06]. By building a volu-
metric region of interest around it, a stroke on the surface can
be used as the control structure for larger spatial deforma-
tions [ZHS∗05]. An interesting alternative for determining
the region of interest is to select the salient part of the mesh
covered by the user’s stroke [ZMY06]. Departing from the
sketching metaphor, an ad-hoc skeleton can be constructed
directly in space using two 6 DOF input devices [LPRS05].

3. Overview

Our work is based on the ad-hoc principle of deriving a
control structure from simple strokes sketched onto an un-
structured mesh. Improving on existing techniques, we wish
to construct a three-dimensional skeleton inside the model
and a set of cutting planes orthogonal to it that spatially de-
scribe the region of interest. The user’s input may be a single
stroke expressing a projection of the skeleton onto the mesh
surface. Alternatively, two strokes can be used that delimit
the region of interest. Automatic connection of these strokes
again yields a projection of the skeleton onto the surface. In
both cases, projection depths and directions must be deter-
mined to reconstruct the skeleton. These should be based on
the model’s shape so that the skeleton be consistent with it.

We use the cutting planes to guide the projection. A plane
is constructed for every anchor point obtained by densely
sampling of the skeleton’s representation on the surface. The
skeleton is then built by projecting every anchor to the center
of the corresponding plane’s cut through the mesh. The key
question is how the planes should be oriented to cut across
the correct mesh region, be consistent with each other, avoid
intersections between individual cuts and sudden changes in
skeleton direction. As will be seen in the following sections,
determining suitable plane orientations is a difficult and of-
ten ambiguous task. We treat it as an optimization problem,
analyzing different optimization algorithms and criteria.

4. Single stroke

Inspired by [KG05], our initial approach is to have the user
specify both the region of interest and its skeleton using a
single stroke. This stroke directly provides a representation
of the skeleton on the mesh surface. To project it inside the
model, cutting planes are constructed at anchor points. Each
cutting plane has three degrees of freedom. The first is the
angle α it forms with the stroke in the tangential plane of the
mesh surface, the second its tilt β relative to this plane. The
third angle, rotating the cutting plane around its own normal,
is irrelevant, as it has no influence on the resulting cut.

Intuitively, α should be chosen so that the cutting plane
be perpendicular to the user’s stroke, while β makes it cut
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across the region of interest. The latter requirement presents
a difficultly as the region of interest is not actually known
until after the cutting planes have been constructed. Suitable
values of β must therefore be derived from user input and
the shape of the mesh alone. A natural choice is the angle
that aligns the plane with the surface normal at its anchor
point in the stroke. Since the normal points away from the
model, following it in the opposite direction can be expected
to guide the plane toward the mesh center and, consequently,
across. Unfortunately, normals are only indicative of the lo-
cal shape of a surface. Figure 2 illustrates how on the left,
surface normals correctly point the cutting planes across the
model, while on the right, the normals are based on the shape
of the bump and lead to intersecting, inconsistent planes.

Figure 2: Side view of cutting plane orientations derived
from surface normals (red: stroke; green: cutting planes)

4.1. Iterative local optimization

To obtain better cutting plane orientations, we introduce an
iterative optimization. All planes are initialized as in the pre-
vious section and then rotated by incrementally adjusting α

and β so that they better cut across the mesh and are more
consistent with each other. Since the desired region of in-
terest is unknown, it is difficult to assess how well the ar-
rangement of cutting planes covers its shape as a whole. The
optimization criteria used are therefore all local, based on
the quality of the cut produced by each plane and its relation
to the immediate neighbors. In every step, the angles are ad-
justed by adding weighted sums of these criteria.

Because cutting planes are constructed for densely spaced
anchor points, the skeleton is likely to undergo only gradual
changes in direction between them. As a result, consecutive
cutting planes should roughly be parallel. The differences in
orientation between a cutting plane and its two neighbors are
expressed in terms of the two rotation angles, yielding a total
of four criteria. These are assigned negative weights so that
the iterative optimization minimizes angle differences.

The second optimization target is to keep the planes’ cuts
through the mesh from intersecting each other. A cut has the
form of a planar polygon and can efficiently be computed if
the mesh is stored in a half-edge data structure. The degree to
which two cuts intersect, however, is difficult to measure. We
therefore approximate it by the fraction of a cut’s total ver-
tices that lie on the far side of the neighboring cutting plane.
This value is an optimization criterion for both α and β, its
weight set so that the planes rotate toward parallelism.

Two final criteria are calculated for each plane on its own.
They assess how well the plane’s orientation agrees not with
its neighbors, but with the shape of the mesh. Based on the
surface normals along the cut, angles are computed by which

the plane should be rotated to cut across the mesh in a more
“natural” way. As observed in [LWTH01], simply averaging
the normals may indicate a good orientation in some cases,
but leads to meaningless results for cylindrical objects. The
more robust method used instead is based on the observa-
tion that given any surface normal, “natural” cutting plane
orientations are those that include this normal. With the cut
expressed as a polygon, the average surface normal is calcu-
lated for each of its edges. The adjustments to α and β are
then recorded that would align the plane with this normal.
Optimization criteria are obtained by adding the influences
of all edges, weighted by their lengths.

4.2. Results

The approach works for some simple meshes, but fails in
more complex cases. We attribute its failings to four main
shortcomings. First, inherent to all iterative optimizations,
is a strong dependence of the final result on a suitable ini-
tial configuration. Our technique of using surface normals to
initialize cutting plane orientations leads to good results on,
for example, a cylinder, but may already fail for a cone:

Following the normals on the lateral surface of a cone
leads not only across, but also away from its apex. For a
stroke parallel to the main axis, this leads to the initial planes
being directed downward (figure 3, left). Whenever a plane
cuts across the lateral surface only, iterative optimization is
able to tilt it upward and produce the desired cut across the
cone, parallel to its base. If, however, the plane traverses both
lateral surface and base, the surface normals direct it in the
opposite direction, leading to an inconsistent cutting plane
arrangement (figure 3, right). Both rotations are correct in
that they locally optimize cutting plane orientations. Never-
theless, the two resulting clusters of planes do not describe
an intuitively correct region of interest. A line connecting the
cuts’ centers is also not likely to be the desired skeleton.

Figure 3: Side view of cutting plane orientations before and
after optimization (red: stroke; green: cutting planes)

A second issue is that without additional constraints, cut-
ting plane orientations and resulting skeleton may drift ar-
bitrarily far from the user’s stroke. The problem is most ap-
parent for strokes orthogonal to the main axis, such as a line
drawn along the perimeter of a cylinder. With two of the op-
timization criteria aiming to rotate the cutting planes toward
more “natural” orientations, all planes could end up turning
so as to cut across the cylinder, thus becoming parallel to the
sketch, coinciding with each other and producing a singular
skeleton consisting of a single point in space. To prevent this
behavior, the rotation angles must be clamped to a range of
values. This immediately leads to the question of how to de-
termine suitable limits. Also, if the cutting planes rotate so
far as to hit the minimal or maximal permissible angles, they
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are prevented from reaching “natural” directions, very likely
leading to poor quality region of interest and skeleton.

The third difficulty lies in the large number of constants
that need to be tuned. A weight must be set for each cri-
terion, the number of iterations decided and limits for the
rotation angles chosen. We have found that parameter values
which work for one stroke may produce unacceptable plane
arrangements for others, even on the same mesh. No single
set of parameters has emerged as generally applicable.

Finally, no systematic handling of ambiguous input is pro-
vided. Given just one stroke on the surface, it is impossible
to guarantee that even the most elaborate algorithm will be
able to capture the user’s intention. If the region of interest
and its skeleton do not agree with what the user wanted, it
should be possible to request an alternative interpretation or
add more input to disambiguate the situation. No such con-
trol is available in this approach.

4.3. Global adjustment

Our analysis shows local optimization to be insufficient in
many cases. We address the issue by introding a global com-
ponent. As noted earlier, the cutting planes’ global agree-
ment with the region of interest cannot be assessed during
optimization because the region is not yet known. It is pos-
sible, however, to more globally view the cutting plane ar-
rangement by itself and correct any internal inconsistencies.
To limit computational cost, the iterative local optimization
algorithm is retained and a global adjustment only periodi-
cally performed every fixed number of steps.

We have implemented the global adjustment in the form
of sweeps. After a certain number of local steps, plane ori-
entations are propagated, or swept, along the stroke. In the
most basic case, the orientation of every plane is set to that
of its immediate predecessor. More aggressive sweeps are
also possible, propagating the orientation of a plane to sev-
eral successors. Despite not actively assessing their arrange-
ment, this simple approach directs the planes toward a more
globally consistent state. The underlying concept is that lo-
cal optimization rotates every plane to the nearest local opti-
mum. By periodically reinitializing the planes using the cur-
rent orientation of a predecessor, each plane rotates toward
the locally optimal orientation closest to that of its predeces-
sor. Successive global sweeps then propagate the new orien-
tations further down the stroke.

Computational cost may be further reduced by returning
to a completely local optimization and only using global in-
formation in the construction of the initial cutting planes. To
detect trends and dominant directions, surface normals are
clustered along the stroke. Smoothing the normals within
each cluster better aligns the initial planes with each other
and eliminates singular planes whose directions strongly dis-
agree with those of their neighbors. Such singularities may
for example arise when the stroke genrally follows a smooth
surface, but passes over a small local bump. Grouping of
similar normals allows singularities to be distinguished from
sudden changes in normal direction due to actual bends in
the model. Contrary to a naïve smoothing of all normals,
clustering thus follows the global shape of the model and
preserves significant sharp changes.

4.4. Results

Addition of a global component to the iterative optimization
process is beneficial for some meshes, while introducting

new issues for others. As a positive example, global sweeps
help to produce a consistent cutting plane arrangement for a
cone. Using only local criteria, some planes may rotate to-
ward the apex and others away from it. With periodic sweeps
reinitializing orientations, the planes are adjusted to succes-
sively align with their predecessors.

This success, however, also highlights a problem. When
propagating plane orientations, the resulting arrangement is
dominated by the locally best orientation found for the first
plane of the stroke. Very different regions of interest may
thus be obtained depending on the stroke direction. In the
example of a cone, the planes become parallel to the cone’s
base when the stroke is drawn away from its apex. If the
stroke is sketched the other way, parallel and consistent
planes are also obtained, but cut across both lateral surface
and base. In this case, such behavior may be desired, allow-
ing the user to disambiguate the input by choosing a stroke
direction. For more complex models, however, sweeps may
rotate planes toward a uniform bearing from which local op-
timization is unable to return them to their correct orienta-
tions. The risk increases as the sweeps are made more ag-
gressive, reinitializing a larger number of planes to the same
orientation and doing so after a smaller number of steps.

Clustering of surface normals during initialization intro-
duces a different type of problem. It requires precise crite-
ria to be chosen for which normals should be grouped to-
gether. This leads to a need for more constants and tuning,
aggravating the similar issue encountered in the original lo-
cal optimization technique. It is again unlikely that a set of
parameter values can be found that works for all meshes.

In summary, global adjustments are able to improve some
aspects of the local optimization algorithm, but introduce
new problems – the risk of an overzealous propagation of
cutting plane directions and the need for additional tuning.
Other important issues are not addressed at all, among them
the missing handling of ambiguous input and the large num-
ber of constants already required by the initial algorithm.

4.5. Dynamic programming

A fundamentally different optimization technique can be de-
veloped using dynamic programming. It does not rely on it-
erative improvement, avoiding the issues associated with it.
Instead of progressively refining the cutting plane orienta-
tion at each anchor point, a number of candidate planes are
constructed and the best one chosen among them.

This method requires a compromise to be made between
computational expense and the probability that a satisfac-
tory plane arrangement can be found. The more candidates
are constructed, the more exhaustively the space of possible
cutting plane orientations can be traversed, but the longer
and more memory-consuming the calculations become. To
achieve an interactive workflow, only one rotation angle is
optimized. The value of α is fixed so that each cutting plane
be perpendicular to the stroke in the tangential plane of its
anchor point. This compromise is based on the observation
that if cutting plane and skeleton are orthogonal, so should
be their projections into the tangential plane.

To optimize the other angle, β, a set of candidate values
must be chosen. This task is faced with difficulties similar to
those of finding a suitable initial cutting plane for iterative
optimization. Given a mesh and a point on its surface, it is
impossible to precisely determine which plane orientations
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are worth investigating and which are not. We therefore do
not attempt to derive candidates angles from the shape of the
mesh but rather uniformly sample a likely range of values,
from −80◦ to 80◦ in two degree increments. The resulting
81 planes may directly be used as candidates. Alternatively,
a pruning pass can eliminate those least likely to produce
suitable cuts. One pruning criterion are the surface normals
along the cut. As explained in section 4.1, these can be com-
bined into a signed metric that indicates in which direction
the plane should be rotated to result in a “natural” cut across
the mesh. Cutting planes close to the zeros of this metric
should be retained as they have the most “natural” orienta-
tions. Other criteria are minima of cut circumference or area.

When the final set of candidates has been established, a
cost metric is calculated for each pair of candidate planes
anchored at neighboring points. It expresses the probability
that these two planes are consistent and describe the same
region of interest. Planes roughly parallel to each other pro-
ducing similar cuts should receive a high rating, while planes
whose cuts intersect or that point in very different directions
should be rated lower. The metric is a weighted sum of sev-
eral criteria: the angle difference between the planes, relative
difference of cut circumference, of cut area and of form fac-
tor. The form factor is a shape descriptor that captures the
essence of the cut shape in a single number. As defined in
[Rus98], it is a value proportional to area/

√
circum f erence.

The results of these preparatory steps are combined into
a directed acyclic graph. For each anchor point, the candi-
date cutting planes are represented by a group of vertices.
Those located in neighboring groups are linked by edges,
their lengths given by the cost metric above. The most likely
combination of planes then corresponds to the least cost path
through the graph beginning at a candidate plane for the first
anchor point and ending at one for the last. Since the graph is
directed and acyclic, the path can efficiently be found using
dynamic programming. Implementation is simplified by the
fact that vertices are grouped and each edge points from one
group to the next. The total computational cost is O(k2n),
with k the number of candidate planes for each of the n an-
chor points extracted from the stroke.

4.6. Results

Dynamic programming often produces better results than the
two iterative approaches. Its capabilities are demonstrated by
the three-pronged star in figure 4. When a stroke is drawn
along the side of one of the prongs, dynamic programming
correctly constructs a series of parallel planes cutting across
this prong only. If the stroke is extended to span the sides
of two prongs, two clusters of planes are returned, cover-
ing both. The skeleton then also traverses both prongs, as is
likely to have been intended by the user.

An important advantage of dynamic programming is its
inherent ability to gracefully deal with ambiguities. Initially,
the cutting plane arrangement considered most likely is re-
turned. If this is not what the user intended, alternative in-
terpretations can easily be found by following progressively
more expensive paths through the graph. As the cost grad-
ually increases, interpretations are encountered in decreas-
ing order of likelyhood. The user interface for choosing be-
tween these alternate solutions could be a simple button for
requesting the next one, a slider for browsing between them
or a screen showing multiple interpretations, one of which is
chosen by clicking on it.

Figure 4: Three-pronged star

While simple and elegant in theory, the handling of am-
biguous input is more problematic in practice. Most paths
through the graph with low cost yield subtle variations of
the most likely interpretation. Only after traversing many
such similar solutions is one found that provides a genuinely
different interpretation of the input. To aid the user in dis-
ambiguating a stroke, solutions should be clustered, present-
ing only one representative for each group of similar cutting
plane arrangements. This, unfortunately, introduces the need
to develop and tune a suitable post-processing algorithm.

The optimization technique’s biggest drawback is that it
itself also requires extensive tuning. What arrangement of
cutting planes is deemed most likely heavily depends on the
weights assigned to the individual criteria that make up the
cost metric. As with the iterative approaches, no single set
of parameter values has emerged as universally applicable.

A final issue is that the two rotation angles cannot be op-
timized simultaneously at interactive speeds. The constant
value chosen for α is based on a reasonable assumption and
often close to optimal. Small adjustments, however, could
still greatly improve the cutting plane arrangement in many
cases. Since simulatenous optimization is too expensive, an
alternative may be to perform multiple passes, alternating
between adjusting α and β.

5. Two strokes

A single stroke is the most basic and simple form of input
available in a sketch-based system. This does not necessar-
ily mean, however, that it also is the most intuitive for all ap-
plications. In [KG05], the user’s input directly serves as the
control structure. A stroke spanning the entire region of in-
terest is therefore required. Our work presumes a less direct
relationship between input and skeleton. Projection from the
mesh surface inward produces a skeleton guided both by the
user’s input and the shape of the model.

To capture the user’s intent, it is most crucial that the cor-
rect first and last cutting planes be found. These delimit the
region of interest, defining the part of the mesh to be covered
by the other cutting planes and skeleton. When using a sin-
gle stroke as input, the user is forced to specify the two cut-
ting planes indirectly: starting and ending point of the stroke
serve as anchors, while stroke directions and surface normals
provide initial guesses for the orientations. The optimization
algorithm must then attempt to construct the desired planes
based on this incomplete information. It would seem more
intuitive to give the user direct control over the two most im-
portant cutting planes, reducing ambiguity and the potential
for incorrect interpretations. This is possible by using two
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strokes as input, one specifying the beginning and the other
the end of the region of interest.

The intuitiveness of using a single stroke is questionable
not only because it lacks direct control over the first and last
cutting planes. A single stroke is interpreted as a projection
of the desired skeleton onto the mesh surface. It is debat-
able whether users can intuitively think in terms of such
projections. This is especially true as projection depth and
direction are computed only after the stroke has been final-
ized, making it impossible to visualize the resulting skeleton
while the user is sketching. Another issue is that the even-
tual projection carries over any imperfections in the stroke.
Minor jitter due to the user’s hand shaking can be eliminated
by filtering. More serious defects, such as loops in the stroke,
are difficult to detect and impossible to fix, leading to invalid
regions of interest and skeletons.

Input in the form of two strokes allows the user to more
precisely specify the region of interest, but provides no infor-
mation about the desired skeleton. To construct the skeleton,
we first synthesize its projection onto the mesh surface, sim-
ulating the single stroke used before. This is then projected
inward with the help of intermediary cutting planes. Their
orientations must again be found by optimization, which is
now easier due to the additional information available about
the region of interest they should cover.

For the skeleton’s representation on the mesh surface, we
use the shortest path connecting the first and last cutting
planes, known as a geodesic. Geodesics can be approximated
by Dijkstra’s algorithm in O(n logn) time with n the num-
ber of mesh vertices. Because a direct application of Dijk-
stra’s algorithm to the mesh produces very coarse approxi-
mations, we use the more sophisticated algorithm of [KS00]
instead. As demonstrated by the authors, this technique pro-
duces high quality approximations at a fraction of the cost of
an exact calculation. The geodesic is a good basis for projec-
tion inside the model as it is guaranteed to both traverse the
entire region of interest and be free of defects such as loops.

5.1. Sketching cutting planes

The question remaining is how each cutting plane is to be
derived from the corresponding stroke. An obvious method
is to locate the plane providing the best fit. As the user is
sketching, the stroke is projected onto the underlying mesh,
resulting in a three-dimensional line lying on the surface.
This is sampled at short intervals, producing a point cloud.
The cutting plane is then the regression plane that best fits
these points. We use principal component analysis for re-
gression. The cutting plane passes through the centroid of
the point cloud and its orientation is given by the first two
principal components of the cloud. A different regression
technique, such as least-squares, could also be used.

5.2. Results

This intuitively appealing approach does not work well in
practice. As observed in [LLS∗04], a cut across a mesh can
take on very different shapes on the front and back surfaces.
Because the user is only sketching the front part, the stroke’s
projection onto the mesh may not be representative of the en-
tire cut. A second problem is that even when the user is cer-
tain of the desired cutting plane, precisely drawing a stroke
that represents it is very difficult. For example, to sketch a

plane cutting through a cylinder, the user must manually fol-
low the surface curvature. The task becomes almost impos-
sible on a cone, where the resulting regression plane is very
likely to be tilted up- or downward instead of cutting through
the cone parallel to its base. Further difficulty is added if a
perspective view is used.

5.3. Sketching rotation axes

The observations made in the previous section suggest a less
literal interpretation of the stroke. Instead of two principal
components, only the first one is used, corresponding to the
most pronounced direction in the stroke. Coupled with one
of the points on the mesh surface the stroke passes through,
this produces a line that captures the essence of the user’s
input. The cutting plane should contain this line, making it
an axis the rotation about which is the only unknown.

To fully specify the cutting plane, its rotation must be de-
termined using one of the optimization techniques. A plausi-
ble initial orientation can be derived from the second princi-
pal component. In this interpretation, the first principal com-
ponent is deemed trustworthy while the second is taken only
as an initial suggestion and then optimized. If minor adjust-
ments to first component’s direction are also to be allowed,
a second rotation axis orthogonal to the first can be used.

5.4. Results

This approach avoids the problems encountered when com-
puting the cutting plane directly from a stroke, but unfortu-
nately introduces new challenges. For one, the additional op-
timization step brings with it all the weaknesses of whatever
optimization technique is chosen. Second, any adjustment of
the cutting plane direction bears the risk of producing a plane
that does not agree with the user’s intentions. While the user
has more direct control over the cutting plane than in the
single-stroke methods, its final orientation is still influenced
by factors other than user input.

6. Conclusions and future work

Ad-hoc approaches have made it possible to deform meshes
without the tedious preprocessing during which a control
structure is normally built and attached. They have intro-
duced a new restriction, however: The control structures pro-
vided are generally two-dimensional. We have proposed in
this paper to overcome the limitation by computing three-
dimensional region of interest and skeleton on the fly. Build-
ing on the strengths of the ad-hoc approach, we do not wish
to burden the user with providing additional input to describe
the more complex three-dimensional structure. Instead, we
perform a more intelligent processing of the input strokes to
find an interpretation that agrees with the user’s intentions.

Our initial approach of using a single stroke is motivated
by the fact that this is the most simple form of input possible.
Unfortunately, it also carries the least amount of informa-
tion, requiring substantial interpretation effort. If the input is
misinterpreted, none or the wrong region of the model may
be selected. The iterative algorithms are especially sensitive
to initial cutting plane orientations. If the cutting planes con-
structed from the only given at the beginning, the stroke and
the surface in its immediate vicinity, do not point roughly
in the right directions, iterative optimization is unable to lo-
cate the desired region of interest. Dynamic programming is
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more robust as it considers a wider range of cutting plane ori-
entations, irrespective of the local surface normals. Despite
this, significant problems remain.

The computation works best on long, straight cylindrical
objects where the skeleton is the main axis and the region of
interest the lateral surface around it. This class includes, for
example, the limbs of many animals (figures 5, 6). If multi-
ple interpretations are plausible, some of the cutting planes
may follow one, some the other. Global adjustments can re-
store consistency, but do not allow the user to intervene when
the wrong interpretation is chosen. Results are undefined if
the user’s stroke cannot easily be interpreted. Such strokes
include those with defects, for example loops or sudden re-
versals in stroke direction, but also strokes drawn in seem-
ingly nonsensical directions on the mesh surface. As no cut-
ting plane arrangement can be consistent with both the stroke
and the shape of the mesh, the result is a region of interest
violating at least one of these two factors. Which of them
prevails depends only on the optimization weights chosen.

Use of two strokes promises to address these deficiencies.
By giving the user direct control over the ends of the region
of interest, accidental selection of the wrong mesh region
can be avoided. Construction of cutting planes by regression
eliminates the sensitivity to loops and other corruptions in
the strokes. The only inconsistency possible is the user spec-
ifying overlapping ends for the region of interest, which can
easily be detected. Cutting plane orientations within the re-
gion must still be found by optimization, but that is signifi-
cantly easier if the region’s extents are known.

One challenge remaining is finding the optimal interpre-
tation method for the two strokes. As shown in section 5.1,
cutting directly along a stroke may not lead to correct results.
The less literal interpretation of the user’s stroke as a rota-
tion axis in section 5.3 allows more corrections to be made
to the cutting plane orientations, but at the risk that the re-
sult may deviate from the user’s intentions. We want to more
precisely investigate these two and other, alternative meth-
ods. For example, the mesh could automatically begin to ro-
tate as the pen approaches its silhouette, allowing the user to
sketch a cut around the entire model in a single stroke. After
implementing these methods, we want to run a user study,
soliciting feedback and choosing the one most suitable.

The second issue we need to address is choosing an op-
timization algorithm for the intermediary plane orientations.
Dynamic programming has shown the most promise and is
the most likely candidate. However, the problem of its re-
liance on constants and tuning remains to be solved. We cur-
rently use a weighted sum of four criteria. A precise analysis
of each criterion’s influence should help to decide which of
these can be dropped, simplifying the algorithm, reducing
the number of constants and making it more likely that a
widely applicable set of parameter values can be found. If
no single set of parameters proves satisfactory, we will pro-
vide the user with a choice of multiple interpretations. This
can be tightly integrated with dynamic programming’s in-
herent ability to produce multiple interpretations for a single
stroke, allowing the user to obtain the desired cutting plane
arrangement even in difficult, ambiguous cases.

After these issues have been addressed, we want to ex-
tend our work to provide actual mesh deformation. Similar
to [KG05], two strokes select part of a mesh and provide it
with a reference skeleton. A single stroke is then sufficient
to serve as the target shape toward which the skeleton is de-
formed. Contrary to and improving on Kho and Garland, the

Figure 5: Results of local iterative optimization for a human
hand model (red: stroke; green: generated cuts)

Figure 6: Results of local iterative optimization for a di-
nosaur (red: stroke; green: generated cuts; blue: skeleton)

view can then be rotated and a new target sketched with-
out constructing a new skeleton and region of interest. This
will allow the user to specify complex deformations with-
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out risking that errors and self-intersections propagate. Us-
ing the region of interest’s spatial representation provided by
the cutting planes, self-intersections can additionally be de-
tected and optionally automatically resolved by moving the
offending parts of the mesh away from each other.

7. Acknowledgments

This work is financed by the “Irish Research Council for Sci-
ence, Engineering and Technology: funded by the National
Development Plan”. The example models were found on the
Internet with their original sources unfortunately unknown.

References

[Blu67] BLUM H.: A transformation for extracting new
descriptions of shape. In MPSVF 1967 (1967), pp. 362–
380.

[BST05] BOUIX S., SIDDIQI K., TANNENBAUM A.: Flux
driven automatic centerline extraction. Medical Image
Analysis 9, 3 (2005), 209–221.

[Buj06] BUJANS R.: A Thesis on Sketch-Based Tech-
niques for Mesh Deformation and Editing. Master’s the-
sis, Washington University in St. Louis, St. Louis, MO,
USA, 2006.

[CGC∗02] CAPELL S., GREEN S., CURLESS B.,
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